COLLOCATION APPROXIMATIONS FOR WEAKLY SINGULAR VOLTERRA INTEGRO‐DIFFERENTIAL EQUATIONS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

Polynomial spline collocation methods for second-order Volterra integrodifferential equations

where q : I → R, pi : I → R, and ki : D → R (i = 0,1) (with D := {(t,s) : 0 ≤ s ≤ t ≤ T}) are given functions and are assumed to be (at least) continuous in the respective domains. For more details of these equations, many other interesting methods for the approximated solution and stability procedures are available in earlier literatures [1, 3, 4, 5, 6, 7, 8, 11]. The above equation is usually...

متن کامل

The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations

Second-kind Volterra integral equations with weakly singular kernels typically have solutions which are nonsmooth near the initial point of the interval of integration. Using an adaptation of the analysis originally developed for nonlinear weakly singular Fredholm integral equations, we present a complete discussion of the optimal (global and local) order of convergence of piecewise polynomial ...

متن کامل

A Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels

The commonly used graded piecewise polynomial collocation method for weakly singular Volterra integral equations may cause serious round-off error problems due to its use of extremely nonuniform partitions and the sensitivity of such time-dependent equations to round-off errors. The singularity preserving (nonpolynomial) collocation method is known to have only local convergence. To overcome th...

متن کامل

A Nodal Spline Collocation Method for Weakly Singular Volterra Integral Equations

A collocation method based on optimal nodal splines is presented for the numerical solution of linear Volterra integral equations of the second kind with weakly singular kernel. Since the considered spline operator is a bounded projector we can prove that, for sequences of locally uniform meshes, the approximate solution error converges to zero at exactly the same optimal rate as the spline app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2003

ISSN: 1392-6292,1648-3510

DOI: 10.3846/13926292.2003.9637233